Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rosli Mohd Mustaqim,^a Shamsher Ali,^a Ibrahim Abdul Razak,^a Hoong-Kun Fun,^a* Shyamaprosad Goswami^b and A. Adak^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bBengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.050 wR factor = 0.174 Data-to-parameter ratio = 22.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(N,N-Dimethylamino)pyridinium perchlorate

The asymmetric unit of the title compound, $C_7H_{11}N_2^+ \cdot ClO_4^-$, contains a 4-(*N*,*N*-dimethylamino)pyridinium cation and a perchlorate anion linked *via* an N-H···O hydrogen bond. Glide-related molecules are linked by C-H···O hydrogen bonds to form a chain along the *c* axis. The chains are arranged to form a layered structure parallel to the *bc* plane.

Comment

N,N-Dimethylaminopyridine is a basic nucleophilic catalyst in organic reactions such as acylation, whereas perchloric acid is an oxidizing agent, despite being a strong acid. We have synthesized the title compound, (I), to study its use as an oxidizing agent in more neutral conditions.

The bond lengths in (I) show normal values (Allen *et al.*, 1987) and are comparable with those reported for 2-amino-5methyl-pyridine hydrochloride (Sherfinski & Marsh, 1975) and 4-aminopyridine hydrochloride dihydrate (Chao *et al.*, 1977). The C4-N1-C3 bond angle is wider than that in pyridine (116.94°; Sorensen *et al.*, 1974) and also that in 4dimethylaminopyridine hydrochloride dihydrate (119.7 (2)°) (Chao *et al.*, 1977), which indicates that the pyridine ring N atom is protonated. This is consistent with theoretical studies which show that protonation on the pyridine ring N atom is

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The $N-H\cdots O$ hydrogen bond is shown by a dashed line.

Received 4 October 2005 Accepted 11 October 2005 Online 19 October 2005

Acta Cryst. (2005). E61, o3733-o3734

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 2 Part of the hydrogen-bonded (dashed lines) chain in (I), viewed down the *a* axis.

much easier than on the N atom of the amino group attached to pyridine (Konishi *et al.*, 1970). The *N*,*N*-dimethylamino-pyridinium cation is essentially planar, with a maximum deviation of 0.031 (2) Å for atom C5.

In the asymmetric unit, the dimethylaminopyridinium and perchlorate ions are linked *via* N1-H1···O3 hydrogen bonds to form a pair. The glide-related pairs are linked by C-H···O hydrogen bonds (Table 2) to form a chain along the *c* axis (Fig. 2). The chains are arranged in such a way as to form a layered structure parallel to the *bc* plane. A short O1···O4(-x, -y, -z) contact of 2.617 (3) Å is observed between inversion-related perchlorate ions in adjacent layers.

Experimental

N,N-Dimethylaminopyridine (30 mg) was dissolved in 70% perchloric acid (0.5 ml) with gentle warming and the reaction mixture was kept at room temperature. After several days, colourless needle-shaped crystals of compound (I) separated, which were collected and dried.

Crystal data

$C_7H_{11}N_2^+ \cdot ClO_4^-$	$D_x = 1.504 \text{ Mg m}^{-3}$
$M_r = 222.63$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 5229
a = 8.1429 (1) Å	reflections
b = 14.8202 (2) Å	$\theta = 2.8 - 30.1^{\circ}$
c = 10.4493 (1) Å	$\mu = 0.38 \text{ mm}^{-1}$
$\beta = 128.771 \ (1)^{\circ}$	T = 293 (2) K
V = 983.16 (2) Å ³	Needle, colourless
Z = 4	0.70 \times 0.33 \times 0.16 mm
Data collection	
Bruker SMART APEX2 CCD area-	2881 independent reflections
detector diffractometer	2368 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.1^{\circ}$
(SADABS; Bruker, 2005)	$h = -11 \rightarrow 11$
$T_{\min} = 0.747, T_{\max} = 0.942$	$k = -20 \rightarrow 20$
15060 manurad reflections	$l = 14 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0974P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 0.3658P]
$vR(F^2) = 0.174$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
2881 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
29 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-O2	1.4277 (16)	N1-C3	1.341 (3)
Cl1-O3	1.4405 (16)	N2-C1	1.339 (3)
Cl1-O1	1.4786 (17)	N2-C6	1.461 (3)
Cl1-O4	1.5412 (17)	N2-C7	1.462 (3)
N1-C4	1.324 (3)		
O2-Cl1-O3	112.92 (10)	C1-N2-C6	121.6 (2)
O2-Cl1-O1	112.25 (12)	C6-N2-C7	117.6 (2)
O3-Cl1-O1	110.47 (10)	N2-C1-C2	122.60 (19)
O2-Cl1-O4	108.63 (11)	C5-C1-C2	115.98 (18)
O3-Cl1-O4	105.90 (10)	N1-C3-C2	121.1 (2)
O1-Cl1-O4	106.24 (10)	N1-C4-C5	121.6 (2)
C4-N1-C3	120.9 (2)		

l able 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O3 ⁱ	0.86	2.00	2.851 (3)	168
C2-H2···O1 ⁱⁱ	0.93	2.55	3.428 (3)	157
C3-H3···O3 ⁱⁱ	0.93	2.53	3.271 (3)	137
$C4-H4\cdots O2^{iii}$	0.93	2.31	3.207 (4)	163
		1 1	1 1	

Symmetry codes: (i) x, y, z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

H atoms were placed in calculated positions, with N-H = 0.86 Å and C-H = 0.93 or 0.96 Å. $U_{iso}(H)$ values were constrained to be 1.5 U_{eq} of the carrier atom for methyl H atoms, and 1.2 U_{eq} for the remaining H atoms.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

SA thanks Universiti Sains Malaysia for a Scientific Advancement Grant Allocation (SAGA) (grant No. 304/ PFIZIK/635003/A118) and a USM short-term grant (No. 304/ PFIZIK/635028).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2005). APEX2 (Version 1.27), including *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chao, M., Schempp, E. & Rosenstein, R. D. (1977). Acta Cryst. B33, 1820– 1823.
- Konishi, H., Kato, H. & Yonezawa, T. (1970). Theor. Chim. Acta, 19, 17-82.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sherfinski, J. S. & Marsh, R. E. (1975). Acta Cryst. B31, 1073-1076.
- Sorensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119–126.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.